Annexure-I

Centre for Computer Science and Applications Dibrugarh University

COURSE STRUCTURE / SYLLABUS MASTER OF COMPUTER APPLICATIONS (MCA) PROGRAMME WITH BRIDGECOURSE

1+2-YEARS DURATION FULL-TIME PROGRAMME

With effect from the session 2022-23

(Approved in the meeting of the Board of Studies in Computer Science held on 28-07-2022)

Credit : Overall Credit: 90 Bridge Course Credit: 0 Core Course Credit: 78 Elective Course Credit: 12

Master of Computer ApplicationSyllabus Structure

<u>Bridge Course</u>

(Only for students not having adequate Mathematics/ Computer Science / Information Technology background)

Bridge Course: 1st Semester

Course	Title of the Paper				
		L	T	P	Credit
BCO 101	Fundamentals of Computer	2	1	1	0
BCO 102	Mathematics-I	3	1	0	0
BCO 103	Computing Lab-I	1	1	2	0
BCO 104	Basics of System Software	2	1	1	0
		Total Credit			0

Bridge Course: 2nd Semester

Course	Title of the Paper				
		L	Т	P	Credit
BCO 201	Web Basics	2	1	1	0
BCO 202	Mathematics-II	3	1	0	0
BCO 203	Computing Lab-II	0	0	4	0
BCO 204	Communicative English and Personality Development	2	1	1	0
Total Credit					0

Two-Year MCA Syllabus Structure

1st Semester:

Course	Title of the Paper	Credits				
		L	T	P	Total	
	Core			•		
MCA 101	Formal Language and Automata	2	1	1	4	
MCA 102	Computer Programming and Problem Solving	2	1	1	4	
MCA 103	Digital Design	2	1	1	4	
MCA 104	Object Oriented Programming and Design (Java)	2	1	1	4	
MCA 105	Discrete Mathematics	3	1	0	4	
	Elective (any one)			•		
MCA 106	Accounting and Financial Management	2	1	1	4	
MCA 107	Oral and Written Communication	2	1	1	4	
MCA 108	Organizational Behaviour	2	1	1	4	
	Audit Course	1	•	•		
MCA 109	Scientific Writing using LateX	(Audit Course)			e)	
	Total Credit				24	

2nd Semester:

Course	Title of the Paper		Credits				
		L	T	Р	Total		
	Core						
MCA 201	Data and File Structures	2	1	1	4		
MCA 202	Data Communication and Computer Network	2	1	1	4		
MCA 203	Computer Organisation and Architecture	2	1	1	4		
MCA 204	Numerical Analysis and Statistical Techniques	2	1	1	4		
MCA 205	Database Management System	2	2	1	4		
	Elective (any one)	1	I.				
MCA 206	Optimization Techniques and Queuing Theory	2	1	1	4		
MCA 207	Graph Theory	2	1	1	4		
MCA 208	Fuzzy Sets and Applications	2	1	1	4		
MCA 209	Image Processing and Pattern Classification	2	1	1	4		
	Audit Course		1				
MCA 210	Computer Graphics and Multimedia	(Audit Course)			e)		
	Total Credit	24			24		

3rd Semester:

Course	Title of the Paper		Credits					
		L	T	P	Total			
	Core	•						
MCA 301	Design and Analysis of Algorithm	2	1	1	4			
MCA 302	Data Mining and Machine Learning	2	1	1	4			
MCA 303	Operating Systems	2	1	1	4			
MCA 304	Software Engineering	2	1	1	4			
MCA 305	Web Technology	2	1	1	4			
	Elective (any one)		•					
MCA 306	Introduction to Data Science	2	1	1	4			
MCA 307	Cloud Computing	2	1	1	4			
MCA 308	Cryptography and Internet Security	2	1	1	4			
MCA 309	Python Programming	2	1	1	4			
	Audit Course		•	•				
MCA 310	Artificial Intelligence		(Audit Course)					
	Total Credit	24						

4th Semester:

Course	Title of the Paper		
		Marks	
	MAJOR PROJECT		
NGA 401	i) Project Seminar and Viva	150	
MCA 401	ii) Final Project Report	100	
	iii) Monthly Reports (Internal)	150	
	Total Credit		

Note:

- *i)* In all the semesters the centre will offer the optional papers as per the availability of respective faculty members.
- *ii)* The result of the Audit course will be reflected in the grade sheet.

Course no : BCO 101	5 1				lits		
	Fundamental of Computers	L-2	T-1	P-0	Total-0		
Objective:			· ·				
 Discuss about c Explain fundam variety of comp multimedia pres Explore about c 	with an objective so that the students omputers and their applications. aental concepts of computer hardware uter applications, including word pro- sentations. omputer viruses and the operating sys	and softwa cessing, spr	re and become eadsheets, data	bases, and			
Learning Outcome:							
 Identify comput Familiar with so Discuss about fi Accomplish cre Distinguish the 	le management ating basic documents, worksheets, pr advantages and disadvantages of diffe he computer viruses.						
`	Theory (TH:B	CO-101)					
	Total Marks (In Semester Evaluation –40 & –60)		ter Evaluation				
Brief history of devel types of computers: A	o computer and information techno opment of computers, computer s nalog, Digital, Hybrid, general, erations of computers, personal cor	ystem con special pu	rpose, Micro,	ities and lin , mini, main	nframe,		
-	rganization and working: computer system, Input devices, ou	ıtput devic	es, storage de	vices.	Marks:		
•	em and Logic Gates adecimal, and Octal systems, Conve and fractions, Binary arithmetic, E		•		*		
	es of software, system software an igh level, 4GL, their merits and o	11	,	1 0	0 0 0		
Unit4: Operating Sy Introduction to Comp Linux, Unix)	stem outer virus, Introduction to Operat	ing Syste	ms (Disk ope	rating system	Marks: 12 m, Window		
Text Books:							
 Thareja R., "Fu Sinha P.K., "Co Rajaraman,V.," 	ndamentals of Computers", 2019, Sec omputer Fundamentals ", 2012, Sixth I Computer Fundamentals ", 2014, Sixtl "Ms-Office", 2015, Laxmi Publication	Edition, BP 1 Edition, P	B Publication	ersity Press.			

Reference Books:

- 1. Goel.A.,,"Computer Fundamentals", 2020, The World Book Depot
- 2. Balagurusamy. E., "Computing Fundamentals and C Programming" 2017, 2nd Edition, McGraw HillEducation
- 3. Ram.B.,"*Computer Fundamentals: Architecture and Organization*",2013,5th Edition, New Age Publication

Course no: BCO 10	2 Title of the Paper:				Credits				
	Mathematics-I	L: 3		T: 1	P: 0	Total: 0			
Objective:									
	ned with an objective to								
scienc					e widely	used in computer			
	Introduce mathematical logic among students of Computer Science.								
	Introduce set, function, relations, permutation and combinations which are used in database								
	gement, Programming Techniques, Tu				1 1.	1 (1 (
	op the use of matrix algebra technique			zing the re	lationshi	p between the vertices			
ng outcomes	aph and movement of robots and man	iy other area	5.						
ing outcomes									
On completion of the	e course, the students will be able to:								
themthrough	explain various methods pertaining to a computer programs. apply the basic methods of discrete m			-	-	eterminants and apply			
1	11 2			1					
Theory (TH:BCO-102) Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation – 60)									
Unit I : Propositions, truth ta	ables, logical equivalence, algebra of p	propositions,	tau	tologies a		arks: 12 diction.			
Unit II: Sets; Cartesian produ	uct, Relations – their types; Functions	s, Fuzzy set -	-con	ncept.	Ma	rks: 12			
Unit III: Complex numbers, o	operations on complex numbers, Perm	utations, Co	mbi	nations.	Ma	rks: 12			
Unit IV:					Mor	ks: 12			
	ot of matrix and determinants, inve	ma of a ma		alamant					
Elementary concep	of main and determinants, mye	ana ma	.11X	, elementa	ary conc	ept of vectors.			
Unit V: Probability Collection	on of data, frequency distribution, me	asures of cer	ntral	l tendency	Mark and disp				
		usures or cer	111 41	<u>i tenaene j</u>	una ansp	orbion.			
2.	Biggs N.L., "Discrete Mathematics", Goldberg J. L., Potter M. C., Edward Edition,Oxford University Press, 200	A. "Advance			-				
Reference Books:									
	1. Lipschutz S., Lipson M. L., Patil			e Mathema	tics (Sch	naums			
	Outlines)",3rdEdition, Tata McG			_					
	 Grimaldi R.P., "Discrete and Con Introduction", 5thEdition, Pearson 	n,2003.							
	3. Sharma K.J., "Discrete Mathemat	<i>tics</i> ", 3rd Edi	tior	n, Macmill	an India	Limited,2010			

ſ

 Write programs using C as a language. Write the basis terminology used in computer programming.
 Write the basic terminology used in computer programming Write, compile and debug programs in C language.
 Write, complete and debug programs in C language. Use different data types in a computer program.
 Design programs involving decision structures, loops and functions.
Theory (BCO-103)
Total Marks: 100
(In semester evaluation $40 \&$ End semester evaluation
(P aging of
(Basics of Unit 1: Introduction to 'C' Language Marks: 12
Character set, Variables and Identifiers, Built-in Data Types, Variable Definition. Arithmetic operators and Expressions, Constants and Literals, Simple assignment statement, Basic input/output statement, Simple "C" programs
Unit 2: Conditional Statements and Loops Marks: 12
Decisionmaking within a program, conditions, Relational Operators, Logical Connectives , if statement, if-else
statement
,Loops: while loop, do while, for loop, Nested loops, Infinite loops, Switch statement, structures Programming.
Unit 3: Arrays & FunctionsMarks:12One dimensional arrays: Array manipulation; Two dimensional arrays,
Top-down approach of problem solving, Modular programming and functions, Return Type, Function call, Block structure, Passing arguments to a Function: call by reference; call by value, Recursive Functions, arrays as function arguments.
Unit 4: Structures Marks: 12
Structure variables, initialization, structure assignment, nested structure, structures and functions, structures and arrays: arrays of structures, structures containing arrays.
Unit 5: Pointers & File Processing Marks: 12
Address operators, pointer type declaration, pointer assignment, pointer initialization, pointer arithmetic, functions and
pointers, Arrays and Pointers, pointer arrays. Concept of Files, File
opening in various modes and closing of a file, Reading from a file, Writing onto a file.
(Graphics Programming)
Text Books:
1. Gottfried Byron "Programming with C" 3rd edition, Tata McGrawhill, 2010
2. Balaguruswami, D "Programming with ANSI-C" 6th Edition, Tata McGrow Hill, 2012.
Reference Books:
1. Brian W. Kernighan, Dennis M. Ritchie," The C Programming Language (Ansi C Version)

Credits

Total: 0

P: 0

L: 2

T: 1

2. Bal Reference

- 1. Bri ami "latestreprint, Prentice Hall India Learning, 1990. 'g ıg
- 2. Dromey, R.G. "How to solve it by Computer", latest reprint, Prentice, 2011.

Learning Outcome: On completion of the course, students will be able to:

Objective: The course is designed with an objective to Developing programming logic using C.

- \geq Wr
- Wr \geq
- ► Use
- > Dea

(Basics of

Prerequisites:

Unit 1: Int

Course no: BCO 103

Basic reasoning abilities.

Unit 2: Co

Title of the Paper:

Computing Lab-I

Unit 3: Ar

Unit 4: Str

Unit 5: Poi

Course No: BCO-104		Title of the Paper:		Credits				
		Basics of System Software	L: 3	T: 0	P:1	Total:0		
Objec	tive:	·		•				
This co	ourse is designed with a	n objective to						
\triangleright	Introduce the major co	oncept areas of language translation and cor	npiler des	ign.				
\triangleright	Provide insight into the code generation, and u	e various phases of compiler and its use, co use of symbol table.	de optimi	zation te	chnique	s, machine		
\triangleright	Introduce the basic co	ncept of parser (LL parser and LR parser).						
≻	Provide practical prog	ramming skills necessary for constructing a	a compiler	:				
Learn	ing Outcome:							
	0	ne students will be able to						
	1 0	ip between system software and machine a	rchitecture	e, design	and			
	•	emblers, linkers and loaders.		· U				
\triangleright		a compiler and the phases of program transl	ation fron	n source	code to	executable		

- ases of prog translation from source co code and the files produced by these phases.
- > Explain lexical analysis phase and its underlying formal models such as finite state automata, pushdown automata and their connection to language definition through regular expressions and grammars

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Overview

Definition and classification of system software.

Assemblers: Assembly language, Assembly process, Design of Assembler: Two Pass and Single Pass Assembler, Assembler macros and macroprocessors.

Unit II: Linkers & Loaders

Basic concepts, Static and dynamic Linking, Functions of a loader, Types of Loaders.

Unit III: Interpreter, Debugger and Editor

Interpreter: Overview of interpretation, Benefits of interpretation. Debugger: Types, features. Editor: Types, structure.

Unit IV: Compiler

Introduction to Compiler, Types of Compiler, The Phases of a Compiler, Compiler-Construction Tools. Lexical Analyzer: The Role of the Lexical Analyzer, Input Buffering, Specification of Tokens, Recognition of Tokens. Regular Expressions.

Parser: Need and role of the parser, Context Free Grammars, Top Down parsing: Recursive Descent Parser, LL(1) Parser, Bottom-up Parsing: Shift Reduce Parser, Operator-Precedence Parser, LR Parser, SLR Parser, LALR Parser, CLR Parser.

Text Books:

1. Pal S., "Systems Programming", Oxford University Press, 2011.

2. Aho A.V., Shethi R., Ulman J.D., "Compilers - Principles, Techniques and Tools", 2nd Edition, Pearson Education, 2002.

3. Dhamdhere D. M., "Systems Programming and Operating Systems", Tata McGraw Hill Company, 2nd Edition, 2009.

Reference Books:

1. Donovan J. J., "Systems Programming", Tata McGraw Hill Company, 2nd Edition, 2000.

2. Raghavan V., "Principles of Compiler Design", Tata McGraw Hill Education Publishers, 2010.

15 Marks

18 Marks

15 Marks

Discussion:

▶ Real life applications with programming approach

Practical

Course No: BCO-201	Title of the	Credit				
	Paper:	L: 2	T: 0	P: 1	Total: 0	
	Web Basics					

Objective:

The course is designed with an objective to

- Discuss different technology aspects of internet.
- Explain how an internet works.
- ▶ Write program in HTML, CSS to design web pages

Learning Outcome:

On completion of the course, students will be able to

- Develop web pages.
- ▶ Resolve Code and troubleshoot HTML web pages, incorporating CSS.

Theory (BCO-201)

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-

60)

Unit I: Introduction to Internet

Basics of internet, Internet protocols, Internet vs Intranet, ISP, URLs, Email, File Transfer Protocol, Internet chatting, Web Servers ,Web Browsers and their functions, Search Engines, Internet issues, security. Introduction to E-Commerce, Meaning, Objective, challenges and opportunities.

Unit II: Introduction to HTML

Basics of HTML, HTML Tag, HTML Documents, Head & Body Sections, Building HTML documents, Insertingtexts, Images, Hyperlinks, Backgrounds and Color controls, Different HTML tags, Table layout, Use of font size& Attributes, List types and its tags, forms in web pages

Unit III: Introduction to CSS

Basic of CSS, Add style to document, Creating Style sheet rules, Style sheet properties, Font, Text, List, Color andbackground color, Box, Display properties.

Text Books:

- 1. Jain V.K., "O Level Module M 1.2 Internet & Webpage Designing"- BPB Publications, 2015
- 2. Whiteley D, "E Commerce: Strategy, Technologies and Applications", Tata McGraw hill, 1st edition.

Reference Books:

- 1. Joseph P.T., "E-Commerce An Indian Perspective (Second Edition)", S.J. Presentice-Hall of India
- 2. Leon A. and Leon M.,"Internet for Everyone", Vikas Publishing House Pvt. Ltd, New Delhi.

15 Marks

30 Marks

Course	Title of the Paper:	Credits			
No:	Communicative English and Personality	L :3	T:1	P:0	Total: 0
BCO-202	Development				
Objective:					

The course is designed with an objective to

- Acquire better communication skills.
- > Have a better personality which can help in dealing with different situations.
- > Have a positive attitude and constructive professional mind
- ► Listen for different needs and ideas

Learning Outcome:

On completion of the course, students will be able to:

- > Exhibit professional attitude in their career perspectives.
- Show better communication skills
- Develop grooming techniques
- Build a constructive professional personality

Theory (BCO:202) **Total Marks: 100** (In Semester Evaluation –40 & End Semester Evaluation –60)

Unit I: General Introduction:

Importance of English its Position, Communicating in English: Difference between the spoken and the written form, How to start dealing with hesitation and shyness.

Pronunciation: English vowels and consonants (RP), Getting to know the IPA, Words generally mispronounced-she, see, seat, cheat, etc, Difference between spelling and pronunciation, Choice of a proper model. Practical exercises

Unit II: Conversation:

Starting a conversation, Things to be kept in mind while engaging in conversation-fluency, accuracy, appropriateness, Planning, Turn taking, Practical exercises.

Situational Conversation:

Facing an interview board, Telephone talk, Wishes etc., Conversation with elders, friends, strangers etc., Terms related to different professions (Banking, Travel agency, Business etc.), Public speaking (Addressing a meeting; Debate; Group Discussion etc.), Practical exercises.

Unit III: Personality Meaning

Personality determinants, personality traits -theory of personality - development of personality from infancy to maturity, emotions and personality

Unit IV : Attitude

Concepts of attitude, formation of attitude, types of attitude, change of attitude values: concepts of values, types of values and behavior habits learning and unlearning of habits.

Unit V: Motivation

Meaning of motivation, nature of motivation, need of motivation personality development self development steps of personality developments.

Text Books :

- 1. Bansal, R.K. and J.B. Harrison, "Spoken English for India", Orient Longman.
- 2. Thorat, Ashok et al., "Enriching Your Competence in English", Orient Longman
- 3. Singh, Vandana., "The Written Word", Oxford Publication

Marks :10

Marks :10

Marks :10

Marks :15

Marks :15

BCO-203 Objective: This course is dest Familiarize students Prerequisites: NA		L:0 T: 0 P:4 Total:
 Familiarize students 		
	with the basic concept of MATLAB	
Prerequisites: NA	while the suble concept of the filler in	programming environments.
Learning Outcomes:		
On completion of the course,	the student will be able to	
 Understand the main simulation/analysis, or 		lopment environment for their use in system
(In	(BCO:203) Total Marks: 100 Semester Evaluation –40 & End S	emester Evaluation –60)
Unit-I: Introduction to MA MATLAB interface, var Operators: arithmetic, rel	iables keywords,, commands	
Unit-III: MATLAB Scripts M files, Function files: 1	primary function, sub function, ways	s of creating script files, input output functions
Unit-IV: Plotting in MATL Visualizing results using	AB g plot, subplot, histogram, bar graph,	pie chart.
Text Books:		
	FLAB: A practical introduction to Pro-	ogramming and Problem Solving", College of 022

Course no:	BCO-204	Title of the Paper:	Credits			
		Mathematics-II	L: 3	T: 1	P: 0	Total:0
> I > I > /	Describe pro Introduce the Appreciate t	with an objective to oblems of differential calculus e idea of double and triple int he purpose of using transforr that is being investigated.	egral.		n in which	n it is easier to handl
SolvExpl	on of the con e problems ain the idea	urse, students will be able to: of differential calculus and in of definite and multiple integ and its inverse transforms of	grals.	18.		
		Theory	(BCO-204)			
	(Total M In Semester Evaluation – 40	Iarks: 100 & End Semes	ster Evaluatio	on –60)	
Unit I: Limits, conti	nuity and or	dinary differentiation.			Ma	arks: 12
Unit II: Partial differen	entiation, H	omogeneous function, Euler's	s theorem on	homogeneou		r ks: 12 ns.
Unit III: Rolle's Theo	rem, Mean `	Value Theorem, Taylor's Seri	es in Finite F	orm and Ma		• ks: 12 Series in Finite Form
Unit IV: Maxima and	Minima of	functions of single variable a	nd two variab	les.	Mar	·ks: 12
Unit V: Indefinite int	egral, defin	te integrals, reduction formul	lae.		I	Marks: 12
	szig E. "Ad	lvanced Engineering Math on E. "Schaum's Outline of G				
	man R.A., "	Essential Calculus with Appli N., "Engineering Mathematic				ations,2014.

Example oriented.Proof of theorems not required.

Two-Year MCA Syllabus

~			1			
	se No:	Title of the Paper:	T O	— 1	Cred	
	A 101	Formal Language and Automata	L: 2	T: 1	P: 1	Total: 4
► ► Learn	ourse is do Identify Design		-			
		of the course, students will be able to:				
	languag Transfo expressi Simplif	rm between equivalent deterministic and non-deterr			-	-
		Total Marks: 100 (In Semester Evaluation –40 & End Semest	ter Evalu	uation-6	0)	
Unit I	: Introdu	ctory Concept Topic		5 N	Aarks	
		guages, Grammars.				
Equiv	alence of	Automata (Deterministic and Nondeterministic) DFA's and NDFA's, conversion, automata with ε gular sets, minimization of finite automata	: - transi		Jarks pore and	d Mealy machines,
Regula expres	ar express	ar Grammar ions, regular languages, regular expression and equi nping Lemma and applications push down automata guages.			Algebra	-
contex	t-free gra	xt Free Language Immars and languages, parsing (or derivation) and Iown automaton (PDA), equivalence between CFG a	-		mbiguit	
		t Sensitive Language re languages, linear bound automata		5 Ma	rks	
Turing Variati	hypothe ions of tu	Machines esis, Turning compatibility, Turing machines as uning machines – non-deterministic, multiple tape, versal turning machines, recursively enumerable lang	two-wa	y infini	recogniz te tape,	, multidimensional,
		15				

Text Books:

- 1. Linz P., "An Introduction to Formal Language and Automata", Jones and Bartlett Publishers, Inc., USA, 2011.
- 2. MishraK. L. P., "Theory of Computer Science: Automata, Languages and Computation" PHI, 3rd Edition, 2009.

Reference Books:

- 1. Nagpal C. K, "Formal Languages And Automata Theory", OXFORD UNIVERSITY PRESS, 2011
- 2. Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D, "Introduction to Automata Theory, Language and Computation", Addison –WEISLEY, 3rd edition, 2013.

Discussion

- Finite Automata
- Regular Language and Expression
- > Context free Grammar, Push Down Automata (PDA) and Turing Machines

Practical (MCA 101)

Course No:	Title of the Paper:			Credits	· · · · · · · · · · · · · · · · · · ·
MCA 102	Computer Programming and Problem Solving	L: 2	T: 1	P: 1	Total: 4
Objective:			1		
This course is des	signed with an objective to				
Describe	the fundamentals of C programming language.				
Demonst	rate C coding.				
Explain t	he skills for problem solving.				
Learning Outco	me:				
0	f the course, students will be able to:				
*	oblems through simple C programs.				
-	advance C program to solve real life problems.				
-	the basics of graphics programming.				
2					
	Total Marks: 100				
	(In Semester Evaluation –40 & End Semest	er Evalua	tion-60)		
Unit I: C fundar	nentals		10 Mar	ks	
	variables, data types, operator & expression,				al Statements
	ts, The C preprocessor.		,		
Unit II: Array a	nd String		15 Mai	rks	
Defining an array array, string func	y, array initialization, processing an array, passin tions.	g array to	a funct	ion, mu	ltidimensiona
Unit III: Functio	on and Pointers		15 Ma	rks	
	nction, defining a function, accessing a function, ursion, Storage classes, other functions (sqrt(), ex			-	by value, cal
•	ions, passing pointer to a function, pointer and				Operation of
pointers, pointers	and multidimensional arrays, array of pointers, j ind-line parameters.			•	•
Unit IV: Structu	ires and Unions		10 Ma	rks	
	ration and Initializing Structure, Accessing Stru	cture mer			Assignment
	re, Passing Structure to function, Structure Point			ii uotui e	, i issignment.
Unit V: File			10 Marl	ks	
	ening a file, closing a file, input/output operation				ng during I/
	om access files, command line arguments, prog				
-	mic memory allocation, allocating a block of mer	-	-	•	
-	oc, releasing the used space: Free, altering the	-		÷	-
	ning examples.				

Text Books:

- 1. Kanetkar Y., "Let Us C", BPB Publications; 14th edition, 2016
- Balagurusamy, E. 'Programming in ANSI C', McGraw Hill Education (India), 6thEdition, 2012
- 3. Griffiths, D., '*Head First C*'', Shroff/O'Reilly,' First edition, 2012.

Reference Books:

- 1. Kernighan, Brian W., Ritchie, Dennis M., '*The C Programming Language*",' PHI, 2nd edition.
- 2. Herbert, S., "C: the Complete Reference", McGraw Hill Education; 4th edition.
- 3. Gottfried, Byron S., '*Theory and Problems of Programming with C*', Tata McGraw Hill Publication

Practical

Course No:	Title of the Paper:		С	redits	
MCA 103	Digital Design	L: 2	T: 1	P: 1	Total: 4

Objective:

The course is designed with an objective to

- Represent and manipulate decimal numbers in different coding systems.
- > Introduce several levels of digital systems from simple logic circuits to programmable logic devices and hardware description language, analysis and design.

Learning Outcome:

On completion of the course, the students will be able to

- Construct logic circuits using logic gates.
- > Design both combinational and sequential circuits.
- > Identify, formulate and implement problems of digital logic.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation –60)

Unit I: Representation of Information:

Number System: Binary, Octal, Hexadecimal, Positive and Negative Number, 1's and 2's complement, Arithmetic Operations: Addition, Subtraction, etc. Character codes: ASCII and BCD. Error detection and correction, parity codes and Hamming codes.

Unit II: Logic Design

Logic Gates and their characteristics, Boolean Algebra, Boolean variables and functions- canonical and standard forms, minimization of Boolean functions - Karnaugh Map.

Unit III: Combinational and Sequential Design:

Implementation of Boolean function and logic gates, concept of combinational design-Adder, Subtractor, Multiplexer, decoders, encoders, simple arithmetic and logic circuits. Concept of latch, Clock, Study of Flip-Flop- S-R, J-K, D,T. Counters- synchronous and asynchronous, Modes of counter, registers.

Unit IV: Memory and Programmable logic Design

PLA, PAL, FPGA concept and volatility.

Unit V: Basic CPU Organization :

Simple functional block diagram of a CPU, instruction execution process, Memory Units, Access time and cost considerations: random access, serial access, direct access.

Text Books:

- 1. Morris M. M., "Digital Logic and Computer Design", Pearson ,2022
- 2. Morris M. M., Cillet M. D."Digital Design", Pearson, 6th edition 2017.

Reference Books:

11. WakerlyJ.F.,"Digital Design: Principles And Practices", Pearson, 5th Edition, 2021

10 Marks

10 Marks

20 Marks

10 Marks

- 2. SalivahananS, Arivazhagan S., "*Digital Circuits and Design*", VIKAS Publishing House PVT LTD, 5th Edition, 2018.
- 3. Hamacher V.C. Vranestic Z.G, Zaky,S.G. "*Computer Organization*", McGraw-Hill, 6th edition , 2011.

Discussion:

Emphasis should be given to

- Logic circuits.
- Characteristics and functions of different electronics components.
- Simple mentioning of the fundamentals of memory units.

Practical

Course No:	Title of the Paper:		Credi	its	
MCA 104	Object Oriented Programming and Design (Java)	L: 2	T: 1	P:1	Total: 4

Objective:

The course is designed with an objective to:

- > Explain Object-Oriented programming concepts and techniques.
- > Demonstrate core level Java Programs, debugging and testing.
- Show implementation of Object-Oriented concept using Java Programs.
- Explain System modelling techniques using UML
- > Illustrate the Use cases, Class diagram and Sequence and Activity diagrams.
- Create the Object Oriented design of a system from the requirements model using UML class, object, and sequence diagrams.

Learning Outcome:

On completion of the course, students will be able to:

- > Resolve programming problems using object oriented principles.
- > Apply Java programming syntax, control structures and Java programming concepts.
- Develop Java Applications.
- Identify Java standard libraries and classes.
- > Write, compile, execute and troubleshoot Java programming.
- > Utilize Java Graphical User Interface in the program writing.
- Analyze and design a Java Program to solve real world problems based on object-oriented principles.
- Apply the principles and practice of object oriented modelling and design in the construction of robust and maintainable programs.

Total Marks: 100

(In Semester Evaluation –40& End Semester Evaluation –60)

Unit I: Encapsulation and Data Abstraction:

Class, Objects, Methods, Constructors, Memory Allocation, Garbage Collection, Packages and Interfaces, Access Specifiers.

Unit II: Polymorphism and Inheritance

Overloading, Overriding, Dynamic Method Dispatch. Single, Multilevel, Hierarchical, Extending a class, implementing an Interface.

Unit III: Exception Handling and Multithreading

Exception types, try, catch and finally blocks, custom exception, throw and throws. Creating threads, Join() and Sleep() methods, Synchronization, wait() and notify() methods.

Unit IV: The Java Library:

String handling, Collection framework, Input/ Output.

Unit V: Object Oriented Modelling as a Design Technique:

Introduction to UML, Overview, History, Usage, Diagrams.

Objects, Classes, Class Diagrams, Values and Attributes, Operation and Methods, Links and Associations, Multiplicity, Generalization and Inheritance, Aggregation. Events, States, Transitions and Conditions, State Diagrams.

Use Case Models, Use Case Diagrams, Sequence Models, Scenarios, Sequence Diagram, Activity Models, Activity Diagram.

12 Marks

12 Marks

12 Marks

12 Marks

Text Books:

- 1. Blaha M.R.,Rumbaugh J, "Object Oriented Modeling and Design with UML", Pearson Education, 2nd Edition, Reprint-2015.
- 2. MalhotraS, Choudhary S, "Programming in Java", Oxford University Press, 2nd Edition, 2015.

Reference Books:

- 1. Bruce E, "Thinking in Java", Pearson Publication.
- 2. Jaime N, Frederick A. H, "Introduction to Programming and Object-Oriented Design Using Java", Wiley Publication.

Practical

Total Marks: 50

(In Semester Evaluation –20 & End Semester Evaluation- 30)

(Practical will be as per the content of the paper)

Course No:	Title of the Paper:		С	redits	
MCA 105	Discrete Mathematics	L: 3	T: 1	P: 0	Total: 4

Objective:

This course is designed with an objective to

- Provide tools from the topics of Discrete Mathematics for analysis and design of computer hardware and computer software.
- Provide the foundation for imbedding logical reasoning in computer science from the topics of propositional calculus.
- > Provide tools to reason for the efficiency of an algorithm.

Learning Outcome:

On completion of the course, students will be able to:

- > Learn some fundamental mathematical concepts and terminology.
- > Write an argument using logical notation and determine if the argument is or is notvalid.
- ➢ Use recursive definitions.
- > Count some different types of discrete structures.
- Demonstrate an understanding of relations and functions and be able to determine their properties.
- ➢ Model problems in Computer Science.
- Learn techniques for constructing mathematical proofs, illustrated by discrete mathematics examples.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Set

Basic concepts of set, terminology, notation; Operation on sets, Algebra of sets, Countable and Uncountable set, Fuzzy set, Computer representation of sets.

Unit II: Relations and function

Relations, equivalence relations, Types of relation, properties of relation; Function, classification of functions, types of function, Some special functions;

Unit III: Logic

Logic operators, Truth table, Normal forms, Theory of inference and deduction, Mathematical induction, Predicate calculus; predicates and quantifiers.

Unit IV: Combinatorics

Basic counting techniques, Recurrence relations and their solutions. Generating functions.

Unit V: Ordered sets

Introductions, Ordered sets, Hase Diagrams of Partially Ordered sets, consistent enumerations supremum and infimum, isomorphic ordered sets well-ordered sets,

10 Marks

10 Marks

10 Marks

10 Marks

Unit V	71: Lattice 10 Marks
	s, bounded lattices, distributive lattices, complements, complemented lattices
Text E	Books:
1.	Kenneth H. Rosen : Discrete Mathematics and Its Applications, Mcgraw-Hill College; 6th
	edition (January 5, 2006).
2.	Biggs N.L., "Discrete Mathematics", 2nd Edition, Oxford University Press, 2009.
Refere	ence Books:
1.	Liu, C. L.: Introduction to Discrete Mathematics. McGraw Hill Education (India) Private
	Limited (2008)
2.	Trembley, Manohar: Discrete Mathematical Structures. McGraw Hill Education (India)
	Private Limited (2 February 2001).
3.	Jiri Matousek, Invitation to Discrete Mathematics, Clarendon Press (23 July 1998)
Discus	ssion
•	Basics of Discrete Mathematics with suitable examples.

ſ

Course No:	Title of the Paper:		Cr	edits	
MCA 106	Accounting and Financial Management	L: 2	T: 1	P: 1	Total: 4
(Elective)					
Objective:					

This course is designed with an objective to

- > To impart basics of formal accounting process.
- > To give idea about financial statements and its preparation.
- > To give basics of financial management and management accounting.

Learning Outcome:

On completion of the course, students will be able to:

> Prepare financial statements and able to prepare reports on financial matters.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Recording of Transactions

Meaning and definition of accounting, parties or users interested in accounting, branches of accounting. Accounting concepts and conventions. Basic accounting terminologies, Classification of accounts, Journal entry, ledger posting and balancing of ledger. Subsidiary Books- meaning and importance, preparation of cash book.

Unit II: Preparation of financial statements

Preparation of Trial Balance: Financial Statements – meaning, objectives, preparation of Trading and Profit and Loss Accounts, Balance Sheet – meaning and objectives and Preparation of Balance Sheet of sole Trading concern and corporate entities. Classification of Assets and Liabilities. Depreciation – meaning, causes, accounting for depreciation. Accounting Software – Tally (introductory part).

Unit III: Conceptual framework of finance

Financial Management - meaning and objectives, functions of financial management. Concept of capital structure-computation of cost of capital, concept and consequences of over and under capitalization, Management of Working Capital-need of working capital, operating cycle, sources of working capital.

Unit IV: Management Accounting Tools

Budget and Budgetary Control – definition, objectives of budget, classification, advantage, characteristics of budget, Preparation of production/sales and cash budget. Capital Budgeting: meaning, importance and methods of capital budgeting. Concept of Marginal Costing, Cost – Volume-Profit analysis, Break-even Point. Standard costing and variance analysis-material and labour variances

Text Books:

1. B.B.Dam, R.A.Sarda, R.Barman, B.Kalita, '*Theory and Practice of Accountancy (V-I)*, 'Capital Publishing Company, Guwahati.

15 Marks

15 Marks

15 Marks

2. R.K.Sharma, S.K.Gupta, 'Management Accounting' Kalyani Publishers, Ludhiana

Reference Books:

- 1. M.Y. Khan, P.K.Jain, '*Principles of Financial Management*' Tata McGraw Hills, New Delhi.
- 2. Ravi M. Kishore, 'Cost and Management Accounting' Taxmann, New Delhi

Discussion:

• Real life approach of Accounting techniques

Practical

Course No:	Title of the Paper:		(Credits	
MCA 107	Oral and Written Communication	L: 2	T: 1	P: 1	Total: 4
(Elective)					
Objective:					

This course is designed with an objective to

- Develop skills in writing, digital presentation, and oral communication as complementary parts of communication and literacy.
- > Develop and refine their own voice and sense of style.
- Practice and refine different forms of communication that are appropriate for the multiple contexts and disciplines that they engage with.
- > Realize thoroughly the relationship between form and content.

Learning Outcome:

On completion of the course, students will be able to:

- Apply skills in writing, digital presentation, and oral communication as complementary parts of communication and literacy.
- Refine their own voice and sense of style.
- Apply different forms of communication that are appropriate for the multiple contexts and disciplines that they engage with.
- > Relate the relationship between form and content.
- Use the role of drafting, revising, presenting, and receiving, processing, and using feedback as important parts of the writing process.

Total Marks: 100

(In Semester Evaluation – 40 & End Semester Evaluation – 60)

Unit I: Language and Communication:

Definition of Communication; Function and purpose of Communication; Process of Communication; Barriers of Effective Communication; Types of communication, Verbal communication, on-verbal communication; The Impact of Communication on Performance, Advantages and disadvantages of oral communication; Improving oral communication; One-to-One oral communication; Oral Presentations

Unit II: Listening Skills:

What is listening; Types of Listening; Barriers of Effective Listening; Strategies for Effective Listening; Semantic Markers; Listening to Complaints.

Unit III: Reading and Writing Skills:

Introduction, Definition and Meaning of Reading, Purpose of Reading, Types of Reading, SQ3R Technique of Reading, Note Taking; Paraphrasing; Elements of writing; Business Letter Writing; Other Business Communications.

Unit IV: Organizational Documents:

Introduction; Business Letter Writing, Types of Business Letter, Job application, Other Business Communication. Memo; Circulars and Notices.

15 Marks

15 Marks

15 Marks

Practical: MCA 107

Course No:	Title of the Paper:		Ст	edits	
MCA 108	Organizational Behaviour	L: 2	T: 1	P: 1	Total: 4
(Elective)					

Objective:

This course is designed with an objective to

- Describe current research in organizational behavior and identify how can be applied to workplace settings
- Understand how application of OB frameworks, tools, and concepts can enhance individual, group, and organizational effectiveness
- Reflect one's own beliefs, assumptions and behaviors with respect to how individuals, groups and organizations act in order to expand the approaches and increase his / her organizational effectiveness

Learning Outcome:

On completion of the course, students will be able to:

- Describe current research in organizational behavior and identify how can be applied to workplace settings
- Distinguish how application of OB frameworks, tools, and concepts can enhance individual, group, and organizational effectiveness
- Reflect his / her own beliefs, assumptions and behaviors with respect to how individuals, groups and organizations act in order to expand the approaches to increase his / her organizational effectiveness.

30

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Focus and Purpose

Definition, need and importance of organizational behaviour – Nature and scope – Frame work – Organizational behaviour models.

Unit II: Individual Behaviour

Personality – types – Factors influencing personality – Theories – Learning – Types of learners – The learning process – Learning theories – Organizational behaviour modification. Misbehaviour – Types – Management Intervention.

Emotional Labour – Emotional Intelligence – Theories.

Attitudes - Characteristics - Components - Formation - Measurement- Values.

Perceptions – Importance – Factors influencing perception – Interpersonal perception- Impression Management.

Motivation – importance – Types – Effects on work behavior.

Unit III: Group Behaviour

Organization structure – Formation – Groups in organizations – Influence – Group dynamics – Emergence of informal leaders and working norms – Group decision making techniques – Team building - Interpersonal relations – Communication – Control.

Unit IV: Leadership and Power

Meaning – Importance – Leadership styles – Theories – Leaders Vs Managers – Sources of power – Sources of power - Power and Politics.

Unit V: Dynamics of Organizational Behaviour

Organizational culture and climate – Factors affecting organizational climate – Importance. Job satisfaction – Determinants – Measurements – Influence on behavior. Organizational change – Importance – Stability Vs Change – Proactive Vs Reaction change – the change process – Resistance to change – Managing change. Stress – Work Stressors – Prevention and Management of stress – Balancing work and Life. Organizational development – Characteristics – objectives –. Organizational effectiveness –

Text Books:

- 1. Stephen P. Robins, "Organisational Behavior", PHI Learning / Pearson Education, 11th edition, 2008.
- 2. Fred Luthans, "Organisational Behavior", McGraw Hill, 11th Edition, 2001

Reference Books:

- 1. Schermerhorn, Hunt and Osborn, "Organisational behavior", John Wiley, 9th Edition, 2008.
- 2. Udai Pareek, "Understanding Organisational Behaviour", 2nd Edition, Oxford Higher Education, 2004.

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

15 Marks

10 Marks

15 Marks

5 Marks

CourseNo:	Title of the Paper:	AUDIT COURSE
MCA 109	Scientific Writing using LaTex	
Objective:		
	designed with an objectives to	
Descri	ibe scientific writing	
Learning Out	come:	
-	ing this course the students will be able to	
	Project report in LaTeX.	
	etting technical documents.	
Create	e presentation in beamer	
	Total Mark	
	(In Semester Evaluation –40 & E	nd Semester Evaluation –60)
Unit I:		5 Marks
Installation of	the software LaTeX, editors of latex.	
Unit II:		10 Marks
Understanding	g Latex compilation, Basic Syntex, Writing e	quations, Matrix, Tables.
		-
Page Layout - making enviro		15 Marks errences, Equation references, citation. List commands, Figure handling numbering, List
Page Layout - making enviro of figures, List	onments, Table of contents, Generating new	errences, Equation references, citation. List commands, Figure handling numbering, List
making enviro of figures, List Unit IV:	nments, Table of contents, Generating new t of tables, Generating index.	rrences, Equation references, citation. List
Page Layout - making enviro of figures, List Unit IV: Packages: Ge listing.	nments, Table of contents, Generating new t of tables, Generating index.	errences, Equation references, citation. List commands, Figure handling numbering, List 10 Marks
Page Layout - making enviro of figures, List Unit IV: Packages: Ge listing. Unit V:	nments, Table of contents, Generating new t of tables, Generating index.	errences, Equation references, citation. List commands, Figure handling numbering, List 10 Marks gorithms, algorithmic graphic, color, tilez
Page Layout - making enviro of figures, List Unit IV: Packages: Ge listing. Unit V:	onments, Table of contents, Generating new t of tables, Generating index. ometry, Hyperref, amsmath, amssymb, al	errences, Equation references, citation. List commands, Figure handling numbering, List 10 Marks gorithms, algorithmic graphic, color, tilez
Page Layout - making enviro of figures, List Unit IV: Packages: Ge- listing. Unit V: Classes: article Unit VI:	onments, Table of contents, Generating new t of tables, Generating index. ometry, Hyperref, amsmath, amssymb, al e, book, report.	errences, Equation references, citation. List commands, Figure handling numbering, List 10 Marks gorithms, algorithmic graphic, color, tilez 10 Marks
Page Layout - making enviro of figures, List Unit IV: Packages: Ge- listing. Unit V: Classes: article Unit VI: Presentation u	onments, Table of contents, Generating new t of tables, Generating index. ometry, Hyperref, amsmath, amssymb, al e, book, report.	errences, Equation references, citation. List commands, Figure handling numbering, List 10 Marks gorithms, algorithmic graphic, color, tilez 10 Marks
Page Layout - making enviro of figures, List Unit IV: Packages: Ge- listing. Unit V: Classes: article Unit VI: Presentation u Practical: • Applie	onments, Table of contents, Generating new t of tables, Generating index. ometry, Hyperref, amsmath, amssymb, al e, book, report. sing beamer.	errences, Equation references, citation. List commands, Figure handling numbering, List 10 Marks gorithms, algorithmic graphic, color, tilez 10 Marks
Page Layout - making enviro of figures, List Unit IV: Packages: Ge listing. Unit V: Classes: article Unit VI: Presentation u Practical: • Applic 1. W	onments, Table of contents, Generating new t of tables, Generating index. ometry, Hyperref, amsmath, amssymb, al e, book, report. sing beamer.	errences, Equation references, citation. List commands, Figure handling numbering, List 10 Marks gorithms, algorithmic graphic, color, tilez 10 Marks
Page Layout - making enviro of figures, List Unit IV: Packages: Ge- listing. Unit V: Classes: article Unit VI: Presentation u Practical: • Applic 1. W 2. W	onments, Table of contents, Generating new t of tables, Generating index. ometry, Hyperref, amsmath, amssymb, al e, book, report. sing beamer. cations to: Vriting Résumé, Vriting question paper,	errences, Equation references, citation. List commands, Figure handling numbering, List 10 Marks gorithms, algorithmic graphic, color, tilez 10 Marks
Page Layout making enviro of figures, List Unit IV: Packages: Ge- listing. Unit V: Classes: article Unit VI: Presentation u Practical: • Applia 1. W 2. W 3. W	onments, Table of contents, Generating new t of tables, Generating index. ometry, Hyperref, amsmath, amssymb, al e, book, report. sing beamer. cations to: Vriting Résumé, Vriting question paper, Vriting articles	errences, Equation references, citation. List commands, Figure handling numbering, List 10 Marks gorithms, algorithmic graphic, color, tilez 10 Marks
Page Layout making enviro of figures, List Unit IV: Packages: Ge- listing. Unit V: Classes: article Unit VI: Presentation u Practical: • Applic 1. W 2. W 3. W 4. W	onments, Table of contents, Generating new t of tables, Generating index. ometry, Hyperref, amsmath, amssymb, al e, book, report. sing beamer. cations to: Vriting Résumé, Vriting question paper,	errences, Equation references, citation. List commands, Figure handling numbering, List 10 Marks gorithms, algorithmic graphic, color, tilez 10 Marks

 Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, Chris Rowley., "The LaTeX Companion", PHI, 2nd Edition, 2009.

Reference Books:

1. Leslie Lamport, "LaTeX: A document preparation system, User's guide and reference manual", Addison Wesley, 1994

Discussion

- Packages
- Editors of latex

Practical

Course No:	Title of the Paper:	Credits			
MCA 201	Data and File Structures	L: 2	T: 1	P: 1	Total: 4

Objective:

This course is designed with an objective to

- > Explain linear and non-linear data structures and its applications.
- > Demonstrate the sorting and searching techniques and its efficiencies.
- Illustrate various algorithm design techniques.
- > Implementing data structure techniques using C programs.
- > Explain various file structures and their utilities.

Learning Outcome:

On completion of the course, students will be able to:

- > Apply and analyze the concept of time, space complexity of an algorithm.
- Identify well-known generic data structures such as stack, queue, tree and related algorithms and apply them to solve problems.
- > Design data structures and algorithms to solve problems.
- > Comprehend the concept of file structures.
- > Implement selected data structures and searching/sorting algorithms Using C language.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Fundamental Notions:

Primitive and composite data types, Time and Space Complexity of Algorithms, Concept of Big-O, small-o & Big- Ω .

Unit II: Linear Data Structure:

Stacks, Queues, Arrays, Linked Lists, Circular & Doubly Linked Lists.

Unit III: Trees

Introduction to Trees, Properties of Trees, Pedant vertices in a Tree, Center of a Tree, Rooted Binary Trees, Concepts of Trees, Extended Binary Trees, Complete Binary Trees, General Trees, Binary Search Trees, Weight balanced and Height balanced Trees, AVL Tree, Balanced Multi-Way Trees, Threaded Binary Trees.

Unit IV: Sorting and Searching:

Selection-sort, Insertion-sort, Bubble-sort, Quick-sort, Heap-sort, Merge-sort. Searching Techniques; Binary search, Linear search.

Unit V: File Structures:

Concepts of Fields, Records and Files, Concepts of Blocks, Clusters, Sectors. Sequential File Organization, Variable length Records and Text Files, Indexing Structures like B-trees, ISAM, Hashing Techniques for Direct Files, Inverted lists, Multilists.

12 Marks

12 Marks

12 Marks

12 Marks

Text Books:

- 1. Seymour L," Data Structures", Tata McGraw Hill, Revised first edition, 2014.
- 2. Baluja G.S., "Data Structure Through C", Dhanpat Rai Publication, 2016.

Reference Books:

1. Cormen, Leiserson, Rivest, "Introduction to Algorithms", Mil Press & McGraw - Hill Publication, 2012

<i>Course No:</i> MCA 202	Title of the Paper:	Credits					
	Data Communication and Computer Network	L: 2	T:1	P:1	Total: 4		
Objective:							
The course is desig	ned with an objective to						
• Describe th	e general principles of data communication	1.					
• Introduce c	computer communication network design a	nd its ope	rations				
Learning Outcome:							
> Design	he course, students will be able to: and analyze computer network. te and set up small networks.						
	Total Marks: 1 (In Semester Evaluation –40 & End S es and Applications of Computer Commun cation Network Architecture : ISO-OSI ref	Semester ication.			15 Marks		
Unit II:			·	.jei (1601	15 Marks		
• •	dulation and multiplexing methods, commu trol protocols: ALOHA, CSMA, CSMA/C			ten bus, F	DDI, satellite networks		
U nit III :					15 Marks		
•	ning, error control techniques, SDLC proto- ing, Congestion and deadlock control, Inter		ng issue	es and dev	ices, IP protocol.		
Unit IV:					15 Marks		
End-to-end Data: Pro	P/IP Protocol, concept of ATM network. esentation formatting issues, data Compress I, Remote login, File transfer, Network file						
Text Books							
	, Mosharraf .F ,: " <i>Computer Networks: A</i> Limited,2011.	Top-Dov	vn Appr	oach", Mo	Graw Hill Education		
2. Forouzan, B. A	"Data Communication and Networking "	Fata Mc	Graw H	ill, 6 th edit	ion, 2014.		
	" Data Communication and Networks ", Ox N."Data and computer communications", P		•				

Discussion:

- Applications: E-mail, Remote login, File transfer, Network file system, Network management.
- Hands on practice on network setup

Title of the Paper:	Credits			
Computer Organization and Architecture	L: 2	T: 1	P: 1	Total: 4
1	v i	0 I		

Objective:

The course is designed with an objective to

- > Describe the basic structure and operations of a digital computer.
- > Illustrate the different ways of communicating with I/O devices and standard I/O interfaces.
- > Indicate the relationship between a computer's instruction set architecture and its assembly language instruction set.
- > Describe fundamental embedded systems design paradigms, architectures.

Learning Outcome:

On completion of the course, the students will be able to

- > Create the programs for microprocessor and microcontroller based system.
- > Develop independent learning skills and be able to illustrate more about different computer architecture and hardware.
- > Identify high performance architecture design.

Total Marks: 100 (In Semester Evaluation -40& End Semester Evaluation -60)

Unit 1: CPU Architecture:

Instruction format - operand addressing formats; Instruction execution process - fetch and execution cycles, data path organization - single and two buses, micro programmed and hardwired control, RISC vs CISC.

Unit2: I/O Architecture:

Characteristics of simple I/O devices their controllers; I/O interface, data transfer synchronization memory - mapped and isolated I/O scheme, Bus arbitration mechanism; Modes of data transfer, direct memory access data transfer, Interrupt mechanism; priority schemes - daisy chaining, interrupt masking, Concept of DMA - cycle stealing and burst mode.

Unit 3:Memory Concepts:

Memory hierarchies - cache memory- Locality of reference, Direct Mapping, Associative Mapping, Block set associative mapping techniques ,Efficiency of cache system ,virtual memory -address space, address mapping using pages memory page table.

Unit 4: Introduction to Embedded System:

Overview of Embedded System, Features, Applications, Hardware and software in Embedded System- RTOS, Basic differences of microprocessor and microcontroller, Concept of different controllers like 8051,PIC.

Unit 5: Programming concept of microprocessor and microcontroller: 12 Marks Introduction to 8085 microprocessor, addressing modes, Instruction sets, Assembly level programming, Programming concept of 8051 microcontroller.

TEXT BOOKS:

12 Marks

12 Marks

12 Marks

- 1. Hamacher.V.C., Vranestic Z.G., Zaky S.G. "Computer Organization", McGraw-Hill,5th Edition,2011.
- 2. Mano M.M., "Computer System architecture", Pearson, 3rd Edition.
- 3. Kamal R," Embedded systems: architecture, programming and design ",Tata McGraw Hill publications,2nd edition,2013

REFERENCES:

- 1. Hamachar C., VranesicZ. ,Zaky S., Manjikian N."*Computer organization & Embedded Systems*", McGraw Hill International Edition, 2017.
- 2. Ram, B., *"Fundamentals of Microprocessors and Microcomputers"*, 5th edition, Dhanpat Rai Publications, 2012.

DISCUSSION:

Foundations of Microprocessor 8085

Practical Total marks:50 (In Semester-20 and End Semester-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:	Credits			
MCA 204	Numerical Analysis and Statistical Techniques	L: 2	T: 1	P:1	Total: 4
Objective:					

This course is designed with an objective to

- Discuss different methods of Numerical Analysis.
- Explain different statistical methods and techniques.

Learning Outcome:

On completion of the course, students will be able to:

- > Apply different numerical methods in practical problems.
- ▶ Use and apply various statistical techniques in real life problems.
- Write computer programs on different numerical and statistical techniques.
- Create software on different numerical and statistical techniques.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation –60)

Unit I: Interpolation

Interpolation : Interpolation with equal intervals – Newton's forward and backward interpolation formula, use of operators Δ and E in polynomial interpolation, interpolation with unequal intervals - relation between divided differences and simple differences, Newton's general divided difference formula, and Lagrange's interpolation formula.

Unit II: Numerical Differentiation and Integration

Maximum or minimum value of the function using numerical differentiation. General quadrature formula of numerical integration, Trepezoidal rule, Simpsons one -third and three-eight's rule's, Weddle's rule. Numerical Solution of Differential Equations: Euler's method, Picard's method of successive approximation and Runge-Kutta method. Solution of system of Linear equation: Cramer's rule, elimination method by Gauss, Jordan's method, Gauss-Seidel's method. Solution of numerical equation using Newton-Raphson method.

Unit III: Probability theory

Basic terminology, different definitions of probability, elementary theorem with illustration, conditional probability – Bayes theorem (without proof) with real life examples, Random variables and their density and distribution functions. Mathematical expectations and its use in decision making (problems), variance and covariance, addition and multiplication theorem of expectation, moments and moment generating functions and their application.

Unit IV: Probability distributions and Test of significance:

Binomial, Poisson and Normal distributions and their simple properties (without derivation of the distribution), tests of significance, t-test, F-test (Emphasis should be given on numerical problems).

12 Marks

12 Marks

12 Marks

Unit V: Correlation and Regression Analysis

12 Marks

Karl-Pearson's coefficient of correlation, Rank correlation coefficient, Lines of regression, Method of Least squares, Fitting of second degree polynomial using the method of least squares.

Text Books:

- 1. Rao, G.S.S. B., "*Probability and Statistics for Engineers*", 3rd edition, Scitech Publications, 2006.
- 2. Das N.G, "Statistical Methods", 4th Edition, Tata McGraw Hill, 2012.

Reference Books:

- 1. Gupta, S.P. "Statistical Methods", 5th edition, Chand & Sons publication, 2012.
- 2. Gupta, S.C. and V.K. Kapoor, "*Fundamentals of Mathematical Statistics*", 5th edition, S Chand & Sons publication, 2010.

Discussion:

• Real life applications with programming approach

Practical

Total Marks: 50

(In Semester Evaluation –20 & End Semester Evaluation-30)

(Practical will be as per the content of the paper)

Course No:	Title of the Paper:		Cr	edits	
MCA 205	Database Management System	L: 2	T: 1	P: 1	Total: 4
Objective:		I			
This course is des	signed with an objective to				
Illustrate	the basic database concepts, including the struct	ure and o	peration	of the	
relational	data model.				
Construct	t simple and moderately advanced database quer	ies using	Structur	ed	
Query La	anguage (SQL).				
	logical database design principles, including E-	R diagram	is and		
database	normalization.				
-	me: The course, students will be able to: database using a DBMS package.				
	t queries using SQL.				
Normaliz					
	Total Marks: 100				
	(In Semester Evaluation –40 & End Semester	Evaluatio	on-60)		
Concept DBMS, J logical models), I ER diagrams, get	tion to DBMS & ER Models1Advantage of using DBMS, Data Models (object DBMS users, Overall System Structure.neralization, specialization, aggregation. Databa el, and Relational model.	_			
Unit II: Relation	al Model	12 Mark	s		
Underlying conce	epts, Structure, Study of Relational Languages (torage and File Structure, File Organization.			, relatio	onal
Unit III: Indexin	ng and Relational Database Design	12 Marks	5		
	ondary, B+ Tree Indexed Files, B - Tree Indexed I	Files, Stat	ic and D	ynamic	Hashing,
	cess, Grid File, Partitioned Hashing.				-
Integrity constrai	nts (domain constraints, referential, assertions,	triggers,	function	al depe	ndencies)
Normalization (u	sing FDs, multivalued dependencies, join dependencies	dencies), l	Domain-	key nor	mal form
Unit IV: Transa	ctions and Concurrency Control	12 Mar	ks		
	ACID properties, Serializability and Recoverabil			rializab	oility.
—	tocols, Timestamp Based Protocols, Validation I		-		
Schemes, and De	-				
IIm;4 V/. D	v. System	13 N.	l.a		
Unit V: Recover	y System ery (deferred and immediate database modification	12 Mar		Shadow	naoino
-	current with transactions, Buffer managements		-		~ ~ ~
•	use Logical undo logging Transaction rollback		•	2	

41

non - volatile storage, Logical undo logging, Transaction rollback, Restart recovery

Text Books:

- 1. Silberschatz A, Korth H.F., Sudersan S., '*Principles of Database Systems*', McGrawHill Publication, 5th Edition,2006.
- 2. Elmarsi R., NavatheS.B., '*Fundamentals of Database Systems*', Narosa publishing Company, 4th edition, 2007.

Reference Books:

1. UllmanJ.D ., WidomJ., 'A First Course in Database Systems'', 3rd Edition, Pearson, 2014. Bayross I., 'Database Concepts and Systems', Shroff Publications, 3rd Edition, 2011

Discussion:

Emphasis to SQL, ER Model, Normalization, transactions.

Practical

Total Marks: 50

(In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:		Cr	edits	
MCA 206	Optimization Techniques and Queuing Theory	L: 2	T: 1	P: 1	Total: 4
(Elective)					
Objective:					
This course is d	esigned with an objective to				
Discuss	different optimization techniques.				
Explain	different queuing models.				
L comin o Outo					
Learning Outc					
^	of the course, students will be able to:				
·	lifferent optimization methods in practical problems				
	l apply various queuing models in real life problems	•			
	omputer programs on optimization methods.				
Create of	own software on optimization techniques.				
	Total Marks: 100				
	(In Semester Evaluation –40 & End Semester E	valuatio	n-60)		
	of Linear Programming		12 Mark		
	Operations Research and OR models ,Introduction				
programming p	problem (LPP), Assumptions of LPP, Feasible	solution	n, Degen	nerate	and Non-
degenerate solu	tion, Convex sets and properties.				
Unit II: Metho	ds for solving Linear Programming		12 Mark	S	
Graphical meth	od of solution of LPP, simplex method, revised si	mplex 1	nethod,	Primal	and Dual
problem, sensiti	vity analysis.				
	portation and Assignment Problems		12 Marl		
North-West Cor	rner Method, Least cost Method, Vogel's Method, N	Iodi Me	thod, Hu	Ingaria	n Methods
etc.					
T T • / T T • /			10.15		
0	er and Dynamic Programming		12 Marl		
-	and Dynamic Programming, Introduction and Meth-				
for All-integer	programming problem and its algorithm, Branch	h and H	Bound n	nethod.	Dynamic
programming ap	pproach to solving LPP				
Unit V: Queuir	0		12 Mark		
	es of a queuing system; Performance measures of	-	•••		
steady-state; Ro	ble of Poisson and Exponential distribution in Queu	ie D	istributio	ons of a	rrivals, of
inter arrivals tin	mes, of departures and of service times, and their	applica	tions in	specifi	c queuing
models, classifi	cation of queuing models. Single server queue mod	els {	(M/M/1)	: (∞ /I	FCFS)},
	FCFS) { (Sans Derivations) and their applications M				
& death process			•	0	``
r · · · · ·					

Text Books:

- 1. Lieberman F.J., "Introduction to Operations Research", 9thedition, McGraw hill education, 2012.
- 2. Verma A.P., "*Introduction to Operations Research*", 4th edition, SKK and Sons-New Delhi, 2010.

Reference Books:

- 1. Srinath L.S., "Linear Programming", 4th edition, East-West, New Delhi, 2010.
- 2. Gillett, B.G., "*Introduction to Operation Research a computer oriented algorithmic approach*", 5th edition,McGraw-Hill,2011.

Discussion:

Real life applications with programming approach

- Model Formulation
- Case study on Simplex and Graphical Method.
- Advantages of Vogel's and MODI method
- Case study on Queuing models

Practical Total Marks: 50

(In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course Code:	Title of the Paper:		edits			
MCA 207	Graph Theory	L:	2	T: 1	P: 1	Total:4
(Elective)						
Objective:						
The Course is design v	vith an objective to:					
Evolution the	as a summing of anonh and its application in	machlana				
	ne overview of graph and its application in ifferent application of graph in real world	problem	SOLVII	ig.		
Learning outcomes:						
On completion of this	course students will able to:					
Apply dif	ferent graph approach in practical problem	IS.				
	e related problems in the language of graph					
	nputer programs and apply it in different pr					
	Part A:Theory (TH:203	3)				
	Total Marks: 100					
(In semester evaluation 40 & End semes	ster eval	uatio	n 60)		
	_				Мах	J.a. 15
Unit 1: Introduction		Cult and		ad IIa:		·ks: 15
	e; Handshaking Lemma; Isomorphism;					
	ks, Paths and Circuits; Components and					
Algorithms, Euleriar	n graph, Eulerian necessary and sufficie	ent cond	itions	; Bipart	ite grap	oh,
maximum degree, is	omorphic graphs, isomorphism.					
Unit 2: PLANNER (GRAH				Ma	rks: 10
	eometric dual, kuratowski's graph, det	ection o	f plan	arity. T		
	cency; matrices and their properties, cu		-	•		0
					Ν	l 10
-	resentations of graph y; matrices and their properties .				Ivia	rks:10
incluence, Aujacene	y, matrices and then properties.					
Unit 4: COLORING	THECHNIQUES				Ma	rks: 10
Chromatic number;	Chromatic polynomial; k- chromatic gr	aph.				
	1				М-	
Unit 5: Theoretical a	8	toot mot				rks: 15
	nimum spanning trees, DFS, BFS, shor	test pau	is, ma	ximum	now, r	-ora-
Fulkerson method.						
Text Books:	mh Theomy with Applications to English	anina -	nd C-	MP14	Saiana	o" DLII
	aph Theory with Applications to Engine Edition 2014	eering a	na Co	mputer	science	e PHI
	V Edition,2014. Introduction to Graph Theory",Prentice	o Uoll o	ublica	tion 5 th	adition	2010
∠, KUUIII J. W.,	miroauction to Graph Theory, Prentice	е пап р	uunca		eution	i, ∠010.

Reference Books:

1. Douglas B. W., "Introduction to Graph Theory", Prentice Hall India Learning Private Limited, 2nd edition, 2015.

2. Harary F., "Graph Theory", Narosa publishing house, 2013.

Practical : (30 END SEM / 20 IN SEM)

Discussion:

Emphasis should be given to the following topics 1. Theoretical algorithms

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be in line with the content of the paper)

Course No:	Title of the Paper:		C		
MCA 208	Fuzzy Sets and Applications	L: 2	T: 1	P: 1	Total: 4
(Elective)					
Objective: This course is dee	signed with an objective to				
	the basic knowledge of fuzzy sets and fuzzy	logic			
-	wledge in fuzzy relations.	10510.			
	ar with the concept of fuzzy numbers and arith	hmetic opera	ations.		
		•			
Learning Outcom					
_	f the course, students will be able to:	owladge of	fuzzvin	formati	on
processin	basic fuzzy system modeling methods and know	owledge of	luzzy III	Iorman	on
processin	۶.				
	Total Marks: 100				
	(In Semester Evaluation –40 & End Semest	ter Evaluatio	on-60)		
Unit I: Fuzzy Se	t	1	0 Mark	S	
=	level sets, convex fuzzy sets, basic operations				v sets.
		2	2.1		5
	on principle and application		10 Mar		
	principle, image and inverse image of fuzzy s	ets, fuzzy nu	umbers,	elemen	ts of fuzzy
arithmetic.					
Unit III: Fuzzy I	Relations	1	0 Mark	s	
•	n fuzzy sets, composition of fuzzy relations, m				properties
•	e relation, fuzzy graph.		L		1 1
Unit IV: Fuzzy I	-		0 Mark		
	zy propositions, fuzzy quantifiers, linguistic		ference	from c	conditional
fuzzy proposition	is, compositional rule of inference, application	18.			
Unit V: Fuzzy C	ontrol	1	0 Mark	s	
•	fuzzy controllers, fuzzy rule base, fuzz				zification
	nd various defuzzification methods, fuzzy nue		-		
systems.					•
	n making in fuzzy environment		10 Mar		
	on making, multiperson decision making, mul			naking,	multistage
decision making,	fuzzy ranking methods, fuzzy linear program	ming, applic	ations.		
Text Books:		П	· · · · · ·	ת יי	
	and Yuan, B. "Fuzzy Sets and Fuzzy Logic: 7	neory and A	Applicat	<i>ions</i> ", P	rentice
	ndia, New Delhi, 1997. nann, H. J., " <i>Fuzzy set theory and its Applic</i> a	ations" All	ied publ	lichara I	td Now
2. Zillinen Delhi 19		unons , All	icu publ	1311018 1	

Delhi, 1991.

Reference Books:

- 1. Dubois, D. and Prade, H. "Fuzzy sets and systems: theory and applications", Academic Press, New York, 1980
- 2. Kandel, A. "*Fuzzy mathematical techniques with applications*", Addison-Wesley, Reading, Mass, 1986
- 3. Kaufmann, A. and Gupta, M. M. "*Introduction to fuzzy arithmetic: theory and applications*", Van Nostrand Reinhold, New York, 1985.
- 4. Kosko, B. "Fuzzy Thinking: the new science of fuzzy logic", Flamingo, 1994.

Discussion

Practical application oriented.

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:			Credits	
MCA 209	Image Processing and Pattern Classification	L:2	T:1	P:1	Total: 4
(Elective)		<u> </u>			
Objective:	1 11 11 11 1				
-	ned with an objective to	1			
-	basic concepts of Image processing and Pattern C		ition.		
Learning Outcome	Ferent algorithms and techniques in Pattern recogn	luon.			
0	e course, students will be able to:				
-	the basic concepts of image processing and patter	n classif	ication.		
	mage processing techniques in different problems.				
	rn Recognition techniques in different problems.				
	Total Marks: 100				
	(In Semester Evaluation -40 & End Semester I	Evaluatio	on –60)		
Unit I: Digital Ima				10Mar	
	sentation, Fundamental steps in Image processing			gital Ima	age
processing systems,	Types of Image, Image acquisition, Sampling and	1 Quanti	ization.		
Unit II: Image Tra	nsforms and Image Enhancement			15 M	arks
6	Discrete Cosine Transform and Haar transforms a	nd their	properti		
Image Enhancemen	t in spatial domain, Histogram, Frequency domain	enhanc	ement.		
Unit III: Imaga Ca	ompression and Segmentation			10 Ma	r
8	models, Image Compression Measures, Huffman	Coding		10 1016	11 K5
	ge Segmentation, Detection of discontinuities, Edg			sholding	
T 1 1 T T 1 1 1 1 1 1 1 1 1 1				10 3 5	
	Recognition Fundamentals a recognition, Fundamental steps in Pattern Recog	nition		10 Ma	rks
	ification, Vector space, Eigen value and Eigen Ve		mes of F	Errors, B	aves
÷	mal Distribution, Dataset, Training set, Test set, S	•			uj es
Normalization.	C C				
II				15 74	1
	cognition: Methods Branch and Bound algorithm, Sequential Forward	Backur	ard Sala	15 Mar	
	riteria Function: Interclass Distance Based.	Dackw	aru Sele	ction alg	goriunn,
	t Function, Non-Linear decision boundaries, K	NN cla	ssifier.	PCA, F	isher's LDA
	tron, Multi-Layer perceptron.		,	,	
Introduction to D					
Text Books:					
1. R.C. Gonza	lez & R. /E. Woods, Digital Image Processing: Ad	ldison -	Wesley	Pub. co	mp
	P.E. Hart and D.G. Stork," Pattern Classification'		•		
	Murty.M.N, "Pattren Recognition:An Introduction	", Unive	ersities P	Press,201	1
Reference Books:			. –	. .	
•	zalez, Richard Woods, Steven Eddins, Digital Ima	0	•	•	
MATLAB,	McGraw Hill Education (India) Private Limited;	2 edition	n (8 Jun	e 2010)	

2. C.M. Bishop," Pattren Recognition and Machine Learning", Springer, 2006

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:	Audit Course
MCA 210	Computer Graphics And Multimedia	
Objective:	·	
The Course is design	n with an objective to:	
Explain all aExplain how	Ferent graphics packages, demonstrate functionality of diaspects of computer graphics including hardware, software an animation is created. An functions in C to implement different graphics primi	are and applications.
Learning outcomes	:	
0	: is course students will able to:	
On completion of th	is course students will able to:	
On completion of th Develop gra Design simp	is course students will able to: phical algorithm to design different graphical pattern ple graphical pattern using C	
On completion of th Develop gra Design simp	is course students will able to: phical algorithm to design different graphical pattern ple graphical pattern using C gramming problem using graphics packages.	
On completion of th Develop gra Design simp	is course students will able to: phical algorithm to design different graphical pattern ple graphical pattern using C	

Unit I:Display Devices

Different display devices, Video Controller, Digital frame buffer, Plasma panel displays, Liquid Crystal Display(LCD), Color-display techniques (Shadow mask and penetration CRT, Line Drawing Algorithm, Circle drawing Algorithm.

Unit II: Display Description and Interactive Graphics

Different Screen co-ordinates, Graphical function, The view algorithms; Clipping Algorithm, Two dimensional transformation, Techniques and Applications, Definition of image, filtering, image processing, Pointing and positioning devices.

Unit III: 3 -D Graphics

Wire-frame perspective display, Parallel Projection, Perspective depth, Projective transformations, Surface Rendering, Bezier Curves and its properties, B-Splines Curves, Constructive solids -geometry methods, Hidden line and surface elimination. Color Models.

Unit IV: Multimedia

Introduction to multimedia, Multimedia applications, Basics of Animation, Music and sounds, Audio basic Concepts, Digital and Analog basic concepts. MIDI concept, different File format (image, audio, video), Image Compression, Sound Compression, Video Compression.

20 Marks

15 Marks

15 Marks

Text Books:

- 2. HearnD., Baker M.P., "Computer Graphics", PHI, 2nd edition 2011.
- 3. Bhattacharya S, "Computer Graphics", Oxford higher education, 1st edition 2018.

Reference Books:

1. Pakhira K, "Computer Graphics Multimedia & Animation"2ndedition,Phi Learning Pvt. ltd 2. Mukherjee D.P., "Fundamentals Of Computer Graphics And Multimedia" Phi Learning, 1st Edition,

Discussion

Algorithms implementation using C (Lines, rectangles, circles, Ellipses, Drawing Arcs, 2-D transformation, Text animation, Simple 2D animation)

T: 1 valuatior		Total: 4
	:ks	
12 Mar		
20 Ma n ming, op		n problems,
8 Mar	·ks	
	aplete pro 8 Mai 8 Mai	 12 Marks aplete problems. 8 Marks 8 Marks algorithms.

- Sridhar S., "Design and Analysis of Algorithms", Oxford University Press, 1st Edition, 2015.
 Mohan, Chandra I., "Design and Analysis of Algorithms", PHI Learning Pvt. Ltd, 2nd edition, 2010.

Reference Books:

- 1. Aho, A. V., Hopcroft J.E., Ullman, J. D., '*The Design and Analysis of Computer Algorithms*,' Addision Wesly.
- 2. Richard, J, "Algorithms", 1st Edition, Pearson Education, 1994.

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course Code:	Title of the Paper:	Credits			
MCA 302	Data Mining and Machine Learning	L:2	T:1	P:1	Total: 4
	·				·
Objective:					
This course is desig	ned with an objective to				

- Determine the overall architecture of a data warehouse and techniques and methods for data gathering and data pre-processing using OLAP tools.
- Discuss different data mining models and techniques using MATLAB.

Learning Outcomes:

On completion of this course, the students will be able to

- Compare various data mining techniques, methods in integrating and interpreting different data sets
- > Obtain improved mechanism for effective and efficient data analysis.
- Discuss the role of data warehousing and enterprise intelligence in industry and government.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Data Mining

Concept of data mining- learning- data warehouse and data mining. KDD and Data Mining. The Knowledge Discovery processes its different stages. Data Mining Techniques – Verification model, Discovery model. Issues and challenges in Data mining.

Unit II: Classification

Bayes decision rule, error probability, normal distribution, linear discriminant function, Non-Linear decision boundaries, KNN classifier, Naïve base classifier, Single layer Perceptron, Multi-Layer perceptron. Fundamental concept of Association rule, Classification rule, Learning, Neural networks, **(Example with practical case studies in Python).**

Unit III: Clusternig

Basics of clustering, similarity dissimilarity measures, clusterning criteria, distance functions, K- means algorithm, single linkage and complete linkage algorithm, K-medoids, K mean algorithm, CLARA, CLARANS, DBSCAN. Genetic algorithm, Rough set techniques. Support vector mechanism, Web mining, Text mining, Sequence mining, Spatial Data mining,

(Example with practical case studies in Python).

Unit IV: Data Warehousing

Concept of data warehousing its evolution. Scope of data warehouse type of data and their use, metadata & their types. Data warehouse schema. Fact data, Dimension data, Partitioning data, data marting. Database schemas – star, star flake, snowflake schemas, and multidimensional schemes, Multidimensional Data model, Data cube, OLAP operations.

20 Marks

15 Marks

15 Marks

Text Books:

- 1. Han J.,Kamber M., "Data Mining: Concepts and Techniques", Morgan Kaufmann, India,3rd edition, 2011,.
- 2. Vipin Kumar, Michael Steinbach, Pang-Ning Tan, Anuj Karpatne, "*Introduction to Data Mining*", 2nd edition January, 2018, Pearson Education India.

Reference Books:

- 1. Han M, and Smyth, "Principles of Data Mining", PHI, India, 2nd edition, 2011.
- 2. Robert Layton, "Learning Data Mining with Python", Second Edition, Packt Publishing, 2017.

Discussion:

- OLAP techniques
- Clustering and Classification
- Association Rule Mining

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

	e operaning of sterms	D . 2	1.1	1.1	Total. 1
Objective:					
This course	e is designed with an objective to				
	plain the concepts and internal working of various opera				
	ustrate the concepts of processes, resource control (conce	urrency	etc.), phy	vsical ar	nd virtual
	emory, scheduling, I/O and files				
> De	monstrate working of different operating system.				
Learning	Outcome:				
0	tion of the course, students will be able to:				
-	alyze the concepts, structure and design of operating Sy	stems.			
	plain operating system design and its impact on applicat		em desig	n and	
	rformance.	2	U		
> De	monstrate competence in recognizing and using operation	ng syster	mfeature	s.	
> We	ork on different OS environment.				
	Total Marks: 100				
	(In Semester Evaluation –40 & End Semester E	Evaluatio	on-60)		
Unit I: Int	roduction 12 Ma	rlza			
	essing, multiprogramming, time-sharing, distributed sys		nctions (romnon	ents and
-	f an operating system.	item, ru	lictions, c	Joinpoi	ents and
structure 0.	an operating system.				
Unit II: Pı	rocess Management 12 Ma	arks			
	concurrent processes - Shared data, Critical sections, M		clusion, l	Mutual	exclusion,
**	of waiting, lock and unlock primitives, semaphore, Syn				
-	ss communication, message passing mechanism, Multith				-
-	Process states, interrupt mechanisms, scheduling	-			-
concurrenc	y Primitives. System deadlock - Prevention, detection a	ndavoida	ance.	-	
	Iemory Management12 M				
-	s and non - contiguous memory allocation; Swappi	ng Virt	ual men	nory pa	iging and
Segmentati	ion -page replacement and space allocation policies.				
Unit IV· I	nput/Output and File Systems 12 M	Iarks			
		14113			

Title of the Paper:

Operating Systems

Credits

T: 1

P: 1

Total: 4

L: 2

Course No:

MCA 303

I/O Management I / O Software goals and structure, Device drivers, Terminal handling, Block and character devices. System Structure, File management strategies, tradeoffs, Directory structures, File system protection, Security, Integrity, Device independence.

12 Marks

Unit V: Distributed Operating System

Concepts of Distributed Operating System - UNIX / LINUX.

57

Text Books:

- 1. Stallings W., "Operating systems" 2nd edition, Prentice Hall, 1995.
- 2. Silberschatz A., Galvin P.B, "Operating System Concepts" 5th edition, Addison-Wesley Publishing Company, 1998.
- 3. Deitel H.M., "Operating System" 2nd edition, Addison-Wesley Publishing Company1990.

Reference Books:

- 1. Tanenbaum A.S., "*Modern Operating Systems*", 2ndedition, Prentice Hall of India, New Delhi, 2002.
- 2. Chandra P., Bhatt P., "An Introduction to Operating Systems Concept", Prentice Hall of India.

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper: Credi		redits		
MCA 304	Software Engineering	L: 2	T: 1	P: 1	Total: 4
01: 4					
Objective : The course is design	ned with an objective to				
-	oftware process models such as the waterfall and	evolution	arymou	أماد	
	e role of project management including planning,		-		ment etc
	are using testing approaches such as unit testing a		-	-	mem,ete.
	are using testing approaches such as unit testing a	nu megi	anontes	sung.	
Learning Outcom	e:				
-	he course, students will be able to				
-	tware system using SDLC models.				
-	SRS document.				
	rams using appropriate rules.				
	are using testing approaches such as unit testing a	and integ	rationtes	sting	
	Total Marks: 100				
	(In Semester Evaluation –40 & End Semester E	valuation	1 - 60)		
			,		
Unit I: Software E	Engineering & Software Project Management		12 N	Iarks	
Software developm	ent and life cycle, project size and its categories.				
Planning of a softw	are project, project - control and project team sta	ndards, S	Scheduli	ng, Risk	C C
management, Conf	iguration management, Software cost estimation	and evalu	ation te	chnique	es.
Unit II: Software	requirements & Software Design		12 M	arks	
Different methodo	logies and techniques of Software requirement ar	nalysis, V	arious d	lesign co	oncepts
	lern design techniques, high level design and deta	•		•	-
object -oriented des		·			U ,
Unit III: Coding.	Verification, Validation and Testing		12 N	Iarks	
0.	elines for coding, coding walkthrough, code insp	ection.			
-	l implementation procedures, Performance of sof		stems, so	oftware	metrics
	nentation of project systems, manuals and impler	•			
	Unit Testing of a test suite etc.	lientation	•		
Stractural Testing,					
Unit IV: Software	e Reliability:		12 M	larks	
Definition and cond	cepts of software reliability, Software errors, faul	ts, repair	and ava	ilability	- re-
	dels, use of database as a case tool, Software Qua	-		•	
Unit V: Software	Maintenance:		12 Ma	ırks	
Categories of ma	intenance, Problems during maintenance, sol	ution to	mainte	enance	problems
-	ss, Maintenance models, Reverse Engineering So				-
CM '	,		-8		

of Maintenance costs.

Text Books:

- 1. Mall R., 'Fundamentals of Software Engineering', Prentice-Hall of India, 4th edition, 2014.
- 2. JaloteP., 'An Integrated Approach to Software Engineering', Narosa Publishing House, 3rd edition, 2014..

Reference Books:

- 1. Pressman R.S., '*Software Engineering: A Practitioner's Approach*', McGraw Hill Publication, 8th edition,2014.
- 2. James K.L., "Software Engineering", PHI Learning, 2nd Edition.

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper) Course No: Title of the Paper: Credits Web Technology **MCA 305** L:2Total: 4 T:1**P**:1

Objective:

This course is designed with an objective to

- Discuss about various concepts related to internet and web.
- > Explain about different web based technologies.

Learning Outcome:

On completion of the course, students will be able to:

- ▶ Write HTML, CSS and scripting languages.
- ▶ Use and apply various web programming languages.
- ➢ Create websites.
- ➢ Handle and maintain web based projects.

Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation -60)

Unit I: Internet Basics.

Network Connectivity Types- dial up- PPP, SLIP, leased, VSAT, ISP, HTTP, TCP/IP, IP Address, Domain Names, DNS, Services-email, WWW, URL, ARP, RARP, WWW, Search Engine, Concept of Client -Server computing, Thin Client vs. Flat Client, Middle ware, Client Pull, Server Push.

Unit II: Web Client

Web Architecture, Browsers, Basic features & Functions, Static, dynamic, Active pages Client- side Inclusive- Scripts, VB Scripts, Java Scripts, Activex, ASP, Plugins, Case Study- IE, Firefox .

Unit III: File Server, Mail Server, Web Server

FTP, Telnet, SMTP, MIME etc. Web Server : Stateful vs. Stateless Servers, Web Server Architecture, Basic features & Functions, URL, Server side inclusive – CGI, API, PERL, JSP, PHP, ASP. NET, Web database Connectivity- JDBC, ODBC, Case Study- IIS, Apache- Tomcat.

Unit IV: Web Application Development

HTML,XML, DHTML with DTD concept <head> & <body> section, able, form, Frame, hyperlinks, CSS Web Page Design using HTML authoring tools- FrontPage/ Dream weaver, Visual Web Developer

Text Books:

- 1. Roy U.K., "Web Technologies", Oxford Higher Education, 9th edition 2015.
- 2. Godbole A., "Web Technologies", Tata McGraw Hill, 4th edition 2012.

Reference Books:

- Bates C., "Web Programming", Willey India Ltd, 3rd edition 2012. 1.
- Jackson C., "Web Technologies-A computer science perspective", Pearson India, 4th edition 2010. 2.

15 Marks

15 Marks

15 Marks

Discussion:

- Java Script, CSS, AJAX
- > PHP,JSP and ASP.net
- Visual Web Development tools.

Web based Project.

Practical Total Marks: 50

(In Semester Evaluation –20 & End Semester Evaluation-30)

(Practical will be as per the content of the paper)

Course No:			dits		
MCA 306 (Elective)	Introduction to Data Science	L: 2	T:1	P:1	Total: 4
Objective:					
•	esigned with an objective to				
> Develop	practical Data analysis skills				
> Develop	fundamental knowledge of concepts un	derlying da	ta science	e project	s.
Develop	practical skills in modern analytics				
Give has	nds on experience with real world data an	nalysis			
Learning Outco	ome:				
0	of the course, students should have follow	wing compe	etences:		
-	o reflect developed methods of activity i			dels.	
•	to propose a model to invest and test met				al activity.
 Capabili 	ity to solve real world data analytics prob	olems.	-		-
 Capabili 	ty of developing new research methods	to solve dat	a analytic	es proble	ems.
	Total Mark	s: 100			
	(In Semester Evaluation –40 & E	and Semeste	er Evaluat	tion-60)	
Unit I: Introdu	ction to Data Science			12 Ma	rks
-	of data, types of data, data collecting met ents, Introduction to Python.	hods, probl	em solvir	ng in Da	ta Science, Data
Unit II: Explor	atory Data analysis			12 Ma	urks
Analytics proble	em solving, Exploratory Data analysis, In	ferential St	atistics, d	lata visu	alization in Python.
Unit III: Proba	bility and Regression			12 Ma	arks
	bility, Conditional probability, Bayes the	orem, Basio	cs of Corr		
Simple linear reg	gression, Multiple linear regression, Naï	ve bayes an	d logistic	regress	ion
Unit IV: Classif	fication and Clustering			12 M	arks
KNN, Decision	_				
Unit V: Enseml	ble method			12 M	arks
Random forest					
Books Recomm	ended:				
	ney, Think Python, 2e: How to Think Lil	ke a Compu	iter Scien	tist, O'R	eilly, 2015.
	EARN PYTHON 3 THE HARD WAY,	•			•
3. Arockia Ma	ary P. Problem Solving and Python Prog	ramming S	Shanlax P	ublicatio	ons 2021

3. Arockia Mary P, Problem Solving and Python Programming, Shanlax Publications, 2021.

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:		Credits		
MCA 307	Cloud Computing	L:2	T:1	P:1	Total: 4
(Elective)					
Objective:					
	esigned with an objective to				
	duce the broad perceptive of cloud architect	ure and mode	1		
To unde	erstand the concept of Virtualization.				
	miliar with the lead players in cloud.				
To unde	erstand the features of cloud simulator				
	y different cloud programming model as per	need.			
To be al	ble to set up a private cloud.				
To understand the design of cloud Services.					
To learn to design the trusted cloud Computing system					
Learning Outco	ome:				
On completion of	of the course, students will be able to:				
Compare the strengths and limitations of cloud computing					
Identify the architecture, infrastructure and delivery models of cloud computing					
Apply suitable virtualization concept.					
Choose	the appropriate cloud player.				
Choose	the appropriate Programming Models and a	pproach.			
Address	the core issues of cloud computing such as	security, priva	acy and	interope	rability
Design (Cloud Services				
Set a pri	ivate cloud				
	Total Marks: 100				
	(In Semester Evaluation –40 & End Sem	nester Evaluat	ion -60))	
Unit I: Cloud A	architecture And Model	12	Marks		
NIST Cloud Cor Cloud models (I	r Network-Based System – System Models mputing Reference Architecture. Cloud Mod IaaS, PaaS, SaaS) – Public vs Private Cloud ment – Computing on demand.	dels: - Charac	teristics	- Cloue	d Services
Unit II: Virtual			2 Marks		
	lization - Types of Virtualization - Impleme Structures - Tools and Mechanisms - Virtua				

Virtual Clusters and Resource management – Virtualization for Data-center Automation.

Unit III: Cloud Infrastructure

Architectural Design of Compute and Storage Clouds – Layered Cloud Architecture Development – Design Challenges - Inter Cloud Resource Management – Resource Provisioning and Platform Deployment – Global Exchange of Cloud Resources.

Unit IV : Programming Model

12 Marks Parallel and Distributed Programming Paradigms – MapReduce, Twister and Iterative MapReduce - Hadoop Library from Apache - Mapping Applications - Programming Support - Google App Engine,

Amazon AWS - Cloud Software Environments -Eucalyptus, Open Nebula, OpenStack, Aneka, CloudSim

Unit V : Security In The Cloud

12 Marks

Security Overview - Cloud Security Challenges and Risks - Software-as-a-Service Security -Security Governance - Risk Management - Security Monitoring - Security Architecture Design -Data Security – Application Security – Virtual Machine Security - Identity Management and Access Control – Autonomic Security.

Text Books:

- 1. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, 2010.

Reference Books:

- 1. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", TMH. 2009.
- 2. Kumar Saurabh, "Cloud Computing insights into New-Era Infrastructure", Wiley India,2011

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

MCA 200	Title of the Paper:	Credits			
MCA 308	Cryptography and Internet security	L:2	T:1	P:1	Total: 4
(Elective)					
Objective:					
This course is des	signed with an objective to				
Discuss a	and explain different online security tools to t	he students.			
Learning Outcom					
On completion of	f the course, students will be able to:				
 Exposure 	e to Internet security.				
	Total Marks: 100				
	(In Semester Evaluation -40 & End Semes	ster Evaluat	ion60)	
					_
Unit I:				12 M	arks
Introduction to Cry	yptography, Mathematical Foundation of Cry	ptograpny s	Secret K	ey.	
	tream and Block Ciphers; Pseudo-random p am ciphers; Correlation attacks and other rele	•		LFSR t	
	Block Ciphers; Differential Cryptanalysis, A		lock Cip	ohers.	
Its Security, other Unit III: One-Way Hash Fu		ttacks on B	-	12 N	Iarks
Its Security, other Unit III: One-Way Hash Fu hash functions. Unit IV: Public Key Crypto Key Establishmen	Block Ciphers; Differential Cryptanalysis, A	ttacks on B MD5, SHA curity Analy	, HAVA	12 M AL; Cryj 12 M SA	larks ptanalysis o larks
Its Security, other Unit III: One-Way Hash Fu hash functions. Unit IV: Public Key Crypto Key Establishmen KERBEROS, EKE Unit V:	Block Ciphers; Differential Cryptanalysis, A unctions and Data Integrity: Snefru, MD4, I ography: Mathematical Foundation, RSA, Sec at Protocols: Symmetric key based and As E, DH-EKE, PAKE, Secret Sharing Schemes: RSA and other related signature sch	ttacks on B MD5, SHA curity Analy symmetric	, HAVA vsis of R Key bas	12 M AL; Cryp 12 M SA sed prot 12 M	larks ptanalysis o larks ocols, larks

Books/References:

1. William Stallings, Cryptography and Network Security: Principles and Practice, Pearson; 6 edition (March 16, 2013)

2. Manezes, Oorschot and Vanstone: Handbook of Applied Cryptography, CRC Press; 1 edition (October 16, 1996)

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will as per content of the paper)

Course No:	Course Name:	Credits			
MCA 309 (Elective)	Python Programming	L: 2	T: 1	P: 1	Total: 4

Objective:

- > To learn basic construct and syntax of Python programming.
- > To learn how to design and program Python based applications.
- > To define the structure and components of a Python program.
- > To learn how to write loops and decision statements in Python.
- > To learn concept of string and string manipulation.
- > To learn how to use List, Tuples and Dictionary.
- To learn how to write functions and pass arguments in Python, build package learn the concept of modules for reusability.
- > To learn concept of exception handling in Python and its implementation.

Learning Outcome:

On completion of the course, students will be able to:

- Solve problems through Python programs.
- > Develop advance Python program to solve real life problems.

Total Marks: 100

(In Semester Evaluation -40& End Semester Evaluation -60)

Unit I: Introduction to Python:

Structure of a Python Program, Elements of Python, Python Interpreter, Using Python as calculator, Python shell, Indentation. Atoms, Identifiers and keywords, Literals, Strings and Operators.

Unit II: Conditional Statements, Looping and String Manipulation:

Branching, Looping, Conditional Statement, Exit function, Difference between break, continue and pass. Understanding string, Accessing Strings, Basic Operations, String slices, Function and Methods.

Unit III: List, Tuples and Dictionary:

Introduction to list, Accessing list, list operations, Working with lists, Function and Methods, Introduction to tuple, Accessing tuples, Operations, Working, Functions and Methods, Introduction to dictionaries, Accessing values in dictionaries, Working with dictionaries, Properties, Functions.

Unit IV: Python Functions and Modules:

Defining a function, Calling a function, Types of functions, Function Arguments, Anonymous functions, Global and local variables, Organizing python codes using functions, Organizing python projects into modules, Importing own module as well as external modules, Understanding Packages, modules and external packages.

Unit V:

Input-Output and Exception Handling: Printing on screen, Reading data from keyboard, Opening and closing file, Reading and writing files, Functions, Introduction to Exception, Exception Handling, Except clause, Try? Finally clause, User Defined Exceptions.

TEXT BOOKS:

- 1. Arockia Mary P, Problem Solving and Python Programming, Shanlax Publications, 2021.
- 2. Z. Shaw, LEARN PYTHON 3 THE HARD WAY, Addison-Wesley, 2017.

REFERENCES:

- 1. Python Tutorial/Documentation www.python.or 2015.
- 2. Python Tutorial https://www.kaggle.com/learn/python

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will as per content of the paper)

12 Marks

12 Marks

12 Marks

12 Marks

Course No:	Title of the Paper:	Audit Course
MCA 310	Artificial Intelligence	

Objective:

This course is designed with an objective to

- Introduce the basic techniques of artificial intelligence: problem solving, heuristic search, knowledge representation, logic system and inference
- > Provide insight into the artificial intelligence, neural networks and applications.
- Introduce students about this critically important technology to increase their understanding of its implications, to pique their curiosity about the remarkable developments that are taking place and help to familiarize students with many faces of Artificial Intelligence and Neural Networks.

Learning Outcome:

At the end of the course, students will be able to:

- Survey and design some practical artificial intelligence applications in any information system domain.
- Solve some natural problems in a systematic way to provide effective and optimal solutions.
- Identify core ideas, techniques, and applications that characterize the emerging fields of Artificial Intelligence.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Introduction to Artificial Intelligence

5 Marks

Natural and Artificial Intelligence, Definitions of AI, Nature of AI Solutions, Testing Intelligence, AI Techniques, Testing Intelligence (Turing Test, Chinese Room Test), Data Pyramid, Computer Based Information Systems in the Pyramid, AI Applications Areas (Mundane Tasks, formal Tasks and Expert Tasks).

Unit II: Problem Solving, Search and Heuristic Search Techniques15 Marks

Problems and Problem Spaces, Problem Characteristics, Production Systems, Control Strategies (Forward Chaining, Backward Chaining), Exhaustive Searches and Blind Methods (Depth First Search, Breadth First Search).

Heuristic Search Techniques, Generate and Test, Hill Climbing, Branch and Bound technique, Best First Search and A* Algorithm, Problem Reduction, AND / OR graphs, AO* Algorithm, Constraint Satisfaction Problems, Means Ends Analysis.

Unit III: Knowledge Representation and Knowledge Acquisition12 MarksKnowledge Representation (KR): Formal KR (First Order Predicate Logic), Procedural KR (Rule,
Semantic Nets, Frames, Conceptual Dependency, Scripts, and Semantic Web), KR Issues and
Limitations.

Using Predicate logic: Syntax and Semantics for FOPL, Properties of Wff's, Conversion to clausal form, Horn's clauses, Unification, Resolution Principles, Deduction Rules

Knowledge Based Systems (KBS) Architecture, Knowledge Acquisition (KA): Techniques, Role of Knowledge Engineer (KE), Knowledge Sharing and Dealing with Multiple Experts, KA Issues and Limitations.

8 Marks

Unit IV: Probabilistic Reasoning and Uncertainties

Crisp and Fuzzy Logic, Fuzzy Membership Functions, Fuzzy Rule Based Systems, Probability and Bayes' Theorem, Certainty factors, Dempster-Shafer theory, Non Monotonic Reasoning and Truth Monitoring Systems.

Unit V: Artificial Neural Networks and Expert Systems20 Marks

Introduction to Neural Computing and Artificial Neural Network (ANN), Fundamental Concepts: Biological Neuron, Artificial Neuron, Activation Function and Output Functions, Introduction to ANN Architectures, Applications of ANN and Expert Systems.

Neural Network Architectures: Hopfield Model, Parallel Relaxation; Perceptron, Lineraly Separable Problems, and Fixed Increment Perceptron; Learning: Multi-layer Perceptron, Non-Lineraly Separable Problems, and Back Propagation Learning; Self Organizing Networks: Kohonens Networks; Recurrent Networks.

Objectives of Learning, Hebb's Rule, Delta Rule, Supervised Learning, Unsupervised Learning.

Text Books:

- 1. Rich E., Knight K., Nair S.B., "*Artificial Intelligence*", Tata McGraw Hill Education, 3rd Edition, 2008.
- 2. Patterson D.W., "Introduction to Artificial Intelligence and Expert Systems", Prentice Hall of India, 1990.
- 3. Russell S., Norvig P., "*Artificial Intelligence: A Modern Approach*", Pearson Education, 3rd Edition, 2015.
- Sivanandam S. N., Deepa S. N., "Principles of Soft Computing", Wiley India, 2nd Edition 2011

Reference Books:

1. Nilsson N.J., "*Principles of Artificial Intelligence*", Narosa Publishing House, New Delhi, Reprint 2002.

2. Jackson P., "Introduction to Expert Systems", Addison Wesley Publishing Company, 1998

Discussion:

Real life applications with programming approach.

Course	Title of the Paper	Marks
	MAJOR PROJECT	
101	i) Project Seminar and Viva	150
MCA 401	ii) Final Project Report	100
	iii) Monthly Reports (Internal)	150
	Total Credit	18